Competing instabilities in the circular free-electron laser

نویسندگان

  • Yasushi Kawai
  • Hirobumi Saito
  • Jonathan S. Wurtele
چکیده

A small signal theory of the circular free-electron laser (FEL) is developed. A matrix dispersion relation, which includes coupling between the transverse magnetic (TM) and transverse electric (TE) waveguide modes, is derived from a Eulerian fluid model. The full dispersion equation is then expanded around the TM and TE mode resonant frequencies of the circular coaxial waveguide. The growth rate for frequencies near the TM mode resonance agrees with previous results obtained from a nonlinear pendulum model of the circular FEL, and becomes the negative mass growth rate as the wiggler field strength approaches to zero. It is shown that the dispersion relation expanded near the TE mode resonance has a coupling with the wiggler field that is different from the usual FEL mechanism. In the limit of a weak wiggler field, the dispersion relation for frequencies near a TE resonance reduces to that of the cyclotron maser. Numerical calculations of the growth rate and the ratio of the amplitudes of TE and TM modes are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Electrons in Free Electron Laser with Square Core Waveguides

Due to sensitive and important applications of free-electron laser in industry and medicine, improvement of the power and efficiency of laser has always been emphasized. Therefore, understanding the created field and examining the properties of the field in waveguides with different shapes and studying the sustainability of electrons movement are particularly important. In this study, the beh...

متن کامل

Self-Fields Effects on Gain in a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and Axial Magnetic Field

In this paper, we have investigated the effects of self-fields on gain in a helical wiggler free electron laser with axial magnetic field and ion-channel guiding. The self-electric and self-magnetic fields of a relativistic electron beam passing through a helical wiggler are analyzed. The electron trajectories and the small signal gain are derived. Numerical investigation is shown that for grou...

متن کامل

Storage ring free electron laser dynamics in presence of an auxiliary harmonic radio frequency cavity

In a Storage Ring Free Electron Laser (SRFEL) there is a strong interdependence between the laser beam and the electron beam from which the laser is generated. The Super ACO storage ring has a second Radio Frequency (RF) cavity at the 5th harmonic of the main RF cavity. It is used to shorten the bunch length, thereby enhancing the laser gain. Employing this RF harmonic cavity instabilities are ...

متن کامل

Propagation and Interaction of Electrostatic and Electromagnetic Waves in Two Stream Free Electron Laser in the Presence of Self-Fields

A relativistic theory for two-stream free electron laser (FEL) with a one-dimensional helical wiggler and ion-channel guiding in the presence of self-fields are presented. A dispersion relation (DR) which includes coupling between the electromagnetic and the electrostatic waves is derived from a fluid model, with all of the relativistic terms related to the transverse wiggler motion. This DR is...

متن کامل

Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion

In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999